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Abstract—Deploying real-time control on large-scale fleets of
electric vehicles (EVs) is becoming pivotal as the share of EVs
over internal combustion engine vehicles increases. In this paper,
we present a Vehicle-to-Grid (V2G) algorithm to simultaneously
schedule thousands of EVs charging and discharging operations,
that can be used to provide ancillary services. To achieve
scalability, the monolithic problem is decomposed using the
alternating direction method of multipliers (ADMM). Further-
more, we propose a method to handle bilinear constraints of the
original problem inside the ADMM iterations, which changes the
problem class from Mixed-Integer Quadratic Program (MIQP)
to Quadratic Program (QP), allowing for a substantial compu-
tational speed up. We test the algorithm using real data from
the largest carsharing company in Switzerland and show how
our formulation can be used to retrieve flexibility boundaries
for the EV fleet. Our work thus enables fleet operators to make
informed bids on ancillary services provision, thereby facilitating
the integration of electric vehicles.

Index Terms—EV, V2G, optimization, optimal scheduling,
ancillary services.

I. INTRODUCTION

A. Background and motivation

Public authorities and the private sector face many chal-
lenges in transforming industries and infrastructure to meet
sustainability goals. A key factor is the successful integration
of renewable energies such as solar or wind power, which how-
ever poses difficulties to the power system due to the increased
fluctuations in supply from renewable energy sources. At the
same time, an increasing number of electric vehicles pose an
additional burden on the grid [16]. Both challenges inspired the
development of smart charging or V2G technologies, where
the charging flexibility of EVs are exploited as buffer storage
to the power system. Smart charging and V2G were shown to
have high potential benefits for peak load shaving [7, 19, 36],
supporting the integration of renewable energies [22] while
offering additional revenues to vehicle owners [18].

Although smart charging and V2G have been studied for
years [12, 29], they remain difficult to implement in prac-
tice for the following reasons: 1) they require control over
a sufficiently large fleet of EVs, 2) they imply complex
dispatching problems, and 3) they involve trading between
the power system and the vehicle fleet operators. A major
opportunity is the application of V2G for large-scale car
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sharing systems [11], since they can centrally manage large
and significant resources for V2G operations. In contrast to the
share of EVs on the private vehicle market (8% global sales
share1), the share of EVs in car sharing systems is already
high, with more than 66% of car sharing services offering
fully or partially electric fleets [27]. V2G may afford additional
revenues to car sharing operators, but at the same time requires
careful dispatching to minimize the negative impact on car
availability for mobility purposes.

Here, we propose an optimization approach for V2G op-
erations that scales to a large fleet of EVs. Specifically, we
first provide a monolithic formulation for optimizing charg-
ing schedules, and further develop relaxations that allow to
decompose the problem by aggregated vehicle hubs such as
car sharing stations. Our experiments demonstrate a strong
improvement in runtime using our approach, enabling its
application on a large-scale vehicle fleet. Furthermore, the
optimization framework is tested on a new dataset from a car
sharing operator in Switzerland. It is shown that our method
scales to a fleet of 1440 electric vehicles in feasible runtime
and can be employed to decrease energy costs while providing
different kinds of grid services. Our optimization approach is
therefore not only relevant for car sharing services but may in
general support in controlling V2G fleet operations.

B. Literature review and previous works

An increasing number of works is tackling the problem of
charging schedule optimization in the context of car sharing;
Xu et al. [34] optimize charging times in a MINLP problem
targeted at determining the fleet size of a car sharing system.
He et al. [15] optimize the charging station setup and schedule
for a car sharing fleet and provide interesting insights on the
best decisions on charging station placement and minimum
State of charge (SOC). Similarly, [3] formulate a two-step
optimization problem in order to reduce the charging prices in
a shared system, while retaining user satisfaction. Only some
research has focused on large-scale, national level optimization
of V2G, since this is a more challenging problem if realistic
constraints are considered. Furthermore, the typical scale of
pilot projects in this context is small: in [25] the authors
reviewed 54 pilot projects using EVs for providing grid
services, reporting an average number of 26 EVs per pilot.

1https://www.ev-volumes.com
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In [21] a decentralized algorithm to optimize the charge (but
not discharge) of 5000 EVs was presented. In [37] the authors
present a rule-base two-stage hierarchical approach to coor-
dinate charging operations of thousands of EVs. While this
research only considers smart charging and not V2G, [5] also
include the possibility of V2G in the relocation-optimization
of one-way car sharing. In [39] the authors coordinated 500
EVs to achieve frequency regulation using a rule-based control
in a V2G setting. [38] regard the problem that is most closely
related to our formulation, namely V2G strategies for car
sharing, and they propose a two-stage stochastic optimization
employing a 24 hours receding horizon approach solved with a
resolution of 15 minutes. They show that keeping integer vari-
ables lead to infeasible solution times (greater than 32 hours
in their case), and propose to both relax all integer variables to
continuous one and use decomposition techniques in order to
speed it up. However, they do not provide a scalability analysis
of their algorithms, nor mention the number of considered
EVs. In contrast to optimal control methods, others propose
data-driven optimization with learning methods. For example,
[8, 20, 30, 31, 32] train a reinforcement learning (RL) agent
to decide on charging behavior. However, these methods are
usually focused on finding decision policies for single EVs,
since finding the optimal joint actions for a fleet of EVs, which
is the focus of our work, is a much more challenging task,
in general requiring a multi-agent RL strategy, which usually
involve to optimize over a large decision space. Authors in
[26] propose RL for guiding charging decisions for a whole
vehicle fleet at once by reducing the action space by pooling
EVs with similar energy requests; however, this was done not
considering external inputs such as an aggregated profile, and
disregarding V2G.

II. PROBLEM DEFINITION AND FORMULATION

In the following we start describing a generic formulation
needed to effectively synchronize the EV fleet charging and
discharging operations, and later explain how relaxing some
conditions can lower the overall computational complexity.
The common setting for all the problem formulations is the
following: a car sharing provider operating a stationary fleet
(as opposed to free-floating) is willing to jointly optimize
all its EVs’ operations in order to reduce its own operating
costs, whether by optimizing for a dynamic price, increasing
its own self-consumption if local PV generation is present,
or by providing services to the electric grid. Furthermore,
the provider knows at least an approximated schedule of
the future EV locations, in terms of their presence at a
given charging station and driven mileage for the next control
horizon. This can be realistically achieved using information
from booking apps and by modeling historical data. Based
on these assumptions we can estimate the lower bounds for
the EVs’ battery energy constraints needed to satisfy all their
foreseen mobility demand, as we will show in section III-B.
These time series are required to formulate the optimal control
problem, as explained in the following section.

A. Monolithic formulations

Given a control horizon of T steps, ns stations, each station
hosting nv,s vehicles, and called T and S the sets of times
and stations, the monolithic problem can be described as:

u∗ = argmin
X

F (u) +Q(x) (1)

xt+1,v = Avxt,v +Bvut,v −∆et,v ∀t ∈ T , v ∈ V (2)
u < 0 (3)

uc 4 xcu
T
c,max ud 4 (1− xc)uTd,max (4)

uc 4 cuTc,max ud 4 cuTd,max (5)∑
v∈Vt,s

uc,t,v − ud,t,v ∈ Us ∀t ∈ T , s ∈ S (6)

∑
v∈Vt,s

ct,v ≤ nmax,s ∀t ∈ T , s ∈ S (7)

where x ∈ RT×
∑

s nv,s is the matrix containing the battery
state for all the EVs in kWh. For sake of clarity, table I reports
all the parameters and optimization variables X of the problem
with associated dimensions and domains.

Name Type Dim. Description

c var Z
T×nv
{0,1} ev connected to charger

xc var Z
T×nv
{0,1} plug state

x var RT+1×nv batteries state [kWh]
uc, ud var RT×nv charging / discharging power [kW]
y var RT energy costs [£]
r par RT reference profile
l par ZT×nv location matrix
nmax,s par Zns stations’ chargers
ps,max par Rns stations’ max power
pbuy , psell par RT buying and selling prices [£/kWh]
e par RT×nv energy constraint matrix [kWh]
∆e par RT×nv ∆ energy at arrival [kWh]
p̂ par RT forecasted station power [kW]
p̂pv par RT forecasted PV profile
xstart par Rnv initial battery state [kWh]
xmin, xmax par Rnv capacity limits [kWh]
ud,min, ud,max par Rnv×2 discharging limits [kW]
uc,min, uc,max par Rnv×2 charging limits [kW]

TABLE I
VARIABLES, PARAMETERS AND CONSTANTS OF THE EV OPTIMIZATION

PROBLEM.

Here F (u) : RT×
∑

s nv,s → R and Q(x) : RT×
∑

s nv,s →
R are two scalar convex functions. In particular F (u) is a cost
function associated with the charging and discharging actions
of the EVs and depends on the specific business model and will
be further specified in section II-B. We now explain in detail
the problem constraints. Equation 2 describes the EVs dynamic
equation, taking into account self-discharge and asymmetric
charging and discharging efficiencies encoded in the Av ∈ R
and Bv ∈ R2 discrete dynamics matrices, obtained by the
continuous one through exact discretization [28]:

A = eAcdt

B = A−1c (Ad − I)Bc
(8)

where Ac = 1
ηsd

and Bc = [ηch,
1
ηds

], and ηsd, ηch and ηds are
the characteristic self-discharge constant, charge and discharge



3

efficiencies, respectively. Since Bc defines an asymmetric
behaviour in charging and discharging (even with equal charg-
ing/discharging coefficients), solving the battery scheduling
requires to use two different variables for the charging and
discharging powers for each EV. These are concatenated and
denoted as a whole as u = [uc, ud], where ud, uc ∈ RT,nv are
charging and discharging operations for all the EVs in kW.
∆e ∈ RT,nv is the (sparse) matrix containing the energy lost
during the last EV trip, defined as:

∆et,v =

{
etd(t),v if ∆tlt,v > 0

0 otherwise
(9)

where the first condition in equation (9) designs times in which
the location matrix has a positive discrete derivative, that is,
when the vth EV connects to a charging station. Here e ∈
RT×nv is the (sparse) energy constraint matrix, containing
the energy that the EVs require at departure times, while td(t)
is the last departure time seen at step t. In other words, the
minimum energies required at departure times and encoded in
e are equal to the energy drops ∆et,v needed to be reintegrated
at next arrival time. The energy requirements stored in e are
assumed to be known at solution time for the next solution
horizon, and they are estimated starting by the total driven km
for the last trip, as explained in section III-B. Since it is not
always possible to guarantee that all the EVs satisfy the energy
requirements stored in e at departure time, state constraints
on the EVs SOC are taken into account as a threshold soft
constraints encoded in Q(x):

Q(x) = k‖max(e− x, 0)‖22 (10)

where k is a large constant, which allows to retrieve feasible
solutions even if some EVs are not fully charged. Equation
(3) states that charging and discharging variables uc and
ud are positive quantities. Equation (4) makes use of the
binary variable xc, which indicates whether a given EV is
charging, to encode the bilinear constraint uc � ud = 0,
where � is the Hadamard product; this encodes the fact that
each EV cannot charge and discharge simultaneously. It must
be noted that this condition is sometimes naturally satisfied
by the problem, depending on the objective function F (u),
as shown for example in [13]. However, this is not always
guaranteed; for example if we want to implement peak shaving
in the presence of PV power plants. In this case EVs could
occasionally decide to both charge and discharge and exploit
the round-trip efficiency to dissipate more power and perform
valley filling when the overall station network is a net energy
producer. The same reasoning can be applied to quadratic
profile tracking, as in the case of tracking a given power
profile for providing services to the grid. In equation (5), the
binary variable c ∈ RT×nv is used to enforce charging and
discharging powers to be zero when the car is not located
at a station. Finally, called Vl,s the set of EVs located at
station s at time t, Us the rectangular box set of power limits
at station s, the last two equations (6) and (7) represent the
station constraints on maximum power and available number
of charging stations, respectively. The problem composed by
equations 1 - 7 is very general, however it is computationally

expensive; due to the presence of the soft constraint on the
minimum required energy (10) (and to the possible quadratic
objectives included in F (u)), the problem belongs to the MIQP
class, with a number of variables in the order of O(Tnv),
where in our case nv is in the order of 103 and T is equal to 96,
since we consider 15 minutes steps and a daily control horizon.
We now discuss how the original problem can be simplified
by relaxing or removing some of the constraints 4 - 7, and the
implications for the problem’s formulation hypothesis.

Strictly stationary mobility model: if the sharing model
is strictly stationary, meaning that the EVs are permanently
assigned to a charging station and can only be plugged there,
we can relax equations (6) and (7) which encode the maximum
power and connection limits per station. These can be rewritten
as: ∑

v∈Vs

uc,t,v − ud,t,v ∈ Us ∀t ∈ T , s ∈ S (11)∑
v∈Vs

ct,v ≤ nmax,s ∀t ∈ T , s ∈ S (12)

The only difference to equations (6) and (7) is that the set
Vs is no more time dependent. This effectively removes the
interlink between different stations given by EVs travelling
between them; in other words, sets of EVs belonging to
different stations will not influence each other directly, but
only by means of the system-level objective F (u). Since the
rest of equations (3) - (4) do not interlink stations, the problem
can be easily decomposed. It must be noted that the original
problem can also be decomposed; however, if the mobility
model is not strictly stationary, it is likely that the influencing
graph between EVs is dense, meaning that the behaviour of a
given EV can be influenced by a high number of other EVs,
dependent on the routing between stations. This will require
to introduce decoupling variables for all the states and control
variables, which involves a message passing of variables in the
order of O(Tnvns) at each iteration. On the contrary, when
F (u) is an aggregate function, as in all the cases presented in
this paper, decomposing the problem requires messages with
size in the order of O(Tns) at each iteration. Since ns << nv
and nv is in the order of thousands, the strictly stationary
hypothesis will results in a data transmission reduction in the
order of 104.

Stations are not downsized: each station has enough
chargers to accommodate all its assigned EVs at the same time.
This hypothesis, combined with the previous one, allows us
to remove completely the binary variable c indicating whether
an EV is connected to a charger. In fact, equation (7) is not
needed anymore, and equations (5) can be replaced with:

uc 4 luTc,max ud 4 luTd,max (13)

where l is the location matrix parameter, with entries lt,v equal
to 0 if the vth vehicle is not located in any stations at time t.

EVs are mono-directional: this hypothesis will not allow
to consider direct discharge of EVs into the main grid, nor
energy arbitrage between EVs. Considering currently available
solutions this is the setting with lower technological burden
which could already be implemented by most EV car shar-
ing providers. Note that it will be still possible to provide
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services to the grid by modulating the overall charge. This
hypothesis will simplify the dynamics equations, removing
the discharging variable ud. As a result, bi-linear constraints
(4) can be dropped, removing the binary variable xc. If this
hypothesis is combined with the two previous ones, the overall
problem becomes linear or quadratic, depending on the form of
F (u), allowing to use a larger set of solvers and substantially
reducing the computational complexity.

B. Decomposition and business models

In this section we show how the original problem can be
decomposed by stations under the hypothesis of a strictly
stationary mobility model and that stations are not downsized.
As we keep the bidirectional hypothesis, we still need to
include the bilinear constraint uc � ud = 0, handled by
equations (4) and by the integer variable xc. In the next
session we will discuss alternative methods to handle this
bilinear constraint. Under the aforementioned hypothesis the
problem can be decomposed using the alternating method
of multipliers (ADMM) [4]. Following the standard ADMM
procedure, since we want to decompose per station, we should
introduce ns auxiliary variables representing the total power
at each charging station. However, since in our case we are
only interested in objective computed at the aggregation level
of stations or for the overall fleet, F (u) can be written in the
form

F (u) = S

(∑
s∈S

ps(u)

)
+
∑
s∈S

C(ps(u)) (14)

where S is a system level objective, that is the objective to
minimize at fleet level, and C is a cost function that should
be minimized at station level. Here ps(u) = p̂s,load − p̂s,pv +∑
v∈Vs uc,v − ud,v is the sum of forecasted base load and

PV production (if any) for station s and the sum of the
charging and discharging operations of all EVs belonging to
s. Considering this form for F (u), we need to introduce only
one additional variable z ∈ RT representing the average power
of the ns controlled stations. The final problem before the
decomposition can be written as:

u∗ = argmin
X

S(zns) +
∑
s∈S

C(ps) +Q(x) (15)

s.t.(2), (3), (4), (13), (12), (11) (16)

z =
1

ns

∑
s∈S

ps(u) := ps(u) (17)

We can then proceed to formulate the augmented La-
grangian objective function in scaled form:

Lρ = S(zns)+
∑
s∈S

C(ps)+Q(x)+
ρ

2
‖ps(uv)−z+λ‖22 (18)

Since problem (15)-(17) can be seen as a sharing problem,
we can further simplify the standard ADMM following the
description in [4] for this specific case. As the choice of
ADMM’s parameter to achieve a good convergence rate can
be problematic under the presence of equality constraints, we
use a slightly different form, namely the linearized ADMM
[14, 35]; briefly speaking, this form introduces a quadratic

penalty for deviating from the decision actions at the previous
iteration. We can then write the minimization in the primal
and dual variables update as:

uk+1
s = argmin

uv

C(ps(us)) +Q(xs) +
ρ

2
‖ps(us)− rku‖22

(19)

+
γ

2
‖us − uks‖22 (20)

s.t. (2), (3), (4), (13), (12), (11) (21)

zk+1 = argmin
z

S(zns) +
ρ

2
‖rz − zk‖22 (22)

λk+1 = λ+ ps(us)
k+1 − zk+1 (23)

where us = [uTv ]T ∀ v ∈ Vs and us = [xTv ]T ∀ v ∈ Vs are
the vectors of operations and states of all the EVs belonging
to station s. Following [4], rku = ps(us)

k−ps(us)k + zk−λk
and rkz = ps(us)

k+1 + λk are the reference signals for the
u and z update. Line (20) contains the dumping term of the
linearized ADMM form for the primal variable us update, γ
being a dumping parameter.

The two functions C(ps(us)) and S(zns), representing
respectively the station and the fleet objectives, can be used to
tackle different business models. For example, for the station
level, the following cases can be easily considered:
• Minimize energy costs. Called pbuy ∈ RT and psell ∈
RT the time-dependent buying and selling prices in
cts/kWh. In the presence of local generation e.g. due
to PV power plants at the station’s location, the cost
function can be either positive or negative, depending on
the overall power at a given time and can be expressed
as in equation (24).

C(ps,t) =

{
pbuy,tps,t, if ps,t ≥ 0

psell,tps,t, otherwise
(24)

The cost can be thought of as the maximum over two
affine functions (the first and second line of equation
(24), respectively). If pbuy is always greater than psell
we can minimize energy costs by introducing an auxiliary
variable y ∈ RT representing the station’s energy costs.
We can restrict the feasible space for y to the epigraph of
the cost function C(ps(us)) by adding the two following
constraints to the station problem (19)-(21):

y ≥ pbuyps (25)
y ≥ psellps (26)

Minimizing y then guarantees that its value at the op-
timum, y∗, will lie on the epigraph’s lower boundary
(and will thus represents the prosumer’s total costs). In
this case C(ps(us)) =

∑T
t ytδt/3600 where δtis the

considered time step. Even without setting a system-
level objective, this strategy can result in some EVs
performing arbitrage, charging at low price times and
later discharging to other EVs if the price swing is high
enough to compensate for the round-trip efficiency.

• Maximize self consumption - minimize energy imports
from the grid. This can be achieved setting C(ps(us)) =∑
t ps,t(us,t). If the term Av in the dynamic state
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equation (2) is less than one, i.e. if self-discharging is
considered, this will result in a delay-charging strategy,
pushing charging operations closer to EV departure times.

• Minimize charging times. If we want to charge EVs up to
their required SOC at departure as soon as possible, we
can minimize C(ps(us)) =

∑
t ps(us)d(t) where d(t) is

a convex discount function weighting less initial steps.
• Perform peak shaving. The most straightforward way is to

set C(ps(us)) = ‖ps(us)‖22. However, pure peak shaving
has usually no economic drivers; the fleet manager is
usually interested in reducing its total costs rather than
having a flat profile per-se. Since peak tariffs are usually
computed on the maximum power peak attained on a
monthly basis, a more appropriate approach could be to
implement a lexicographic strategy, at first minimizing
the station’s economic costs and then using the optimal
cost found in this first step as a constraint for a second
optimization in which a peak shaving objective is mini-
mized.

At the same way, the system level objective S(zns) can be
used to address several fleet-level business cases:
• Intra-day cost minimization. In the case in which the fleet

manager has a deal to buy energy at intra-day costs,
it can follow the same strategy illustrated to the cost
minimization objective at station level and set S(zns) =∑T
t ytδt/3600.

• Profile tracking. A standard quadratic profile tracking can
be used to make the fleet dispatchable setting S(zns) =∑T
t (zns − r)2, where r is a reference profile to be

tracked. However, to quantify revenues from grid regu-
lation services and flexibility calls, a linear cost function
is more appropriate, as equation (31) that we used in the
presented case study in section III-D.

C. Bilinear constraints handling

We now present the proposed method to handle the bilinear
constraint uc � ud = 0 inside the ADMM iterations of the
decomposed problem (19)-(23), without using the integer vari-
able formulation encoded in equation (4). Linear complemen-
tarity constraints arise in a variety of problems from bilevel
optimization to eigenvalue complementary problems. Given a
scalar objective function f(x, y) of two variables x, y ∈ RT+,
the simplest form of the complementarity constraint problem
can be written as:

argmin
z

f(z) (27)

s.t. xT y = 0 (28)

where z = [xT , yT ]T . Depending on the complexity of the
underlying problem, which is in general NP-hard, different
iterative methods exist to find a feasible solution or a sta-
tionary point for this kind of problem [17]. One of the
most used strategy is the one implemented in the YALMIP
package for Matlab, which uses the built-in solver for non-
convex problems BMIBNB. The procedure sequentially finds
refinements of an upper and a lower bounds for the problem,
respectively found using a local non-linear and a convex solver.

The next iteration is then found using a standard branch-
and-bound logic and split the feasible space into two new
boxes [1]. The convex approximation for bilinear problems
is found using a McCormick formulation. In [6], the authors
proposed tighter bounds for bilinear problems exploiting Mc-
Cormick relaxations and a sequence of MILP problems. The
McCormick envelope has been also proposed for the relaxation
of factorable functions by systematic subgradient construction
[23], a concept similar to automatic differentiation. In this
work we have chosen a different approach relying on the
following observation: since we are solving the main problem
iteratively, we want to exploit an iterative relaxation running
in parallel with the standard ADMM iteration, without relying
on branch and bound methods. Running a partial optimization
for one part of the objective function for ADMM is theoreti-
cally justified by the generalized form of ADMM (GADMM)
introduced in [9]. The GADMM guarantees the convergence
even in the case in which the local (stations’) problems are
only partially solved. This allows us to use a first order Taylor
expansion around the previous solution to approximate the
complementarity constraint x � y = 0, in combination with
a standard ADMM using Lagrangian relaxation. We can write
the first order Taylor expansion around the previous solution
as:

c̃(zk, zk−1) = xk−1yk−1 + xk−1(yk − yk−1)

+ yk−1(xk − xk−1)
(29)

We propose to use this to minimize f(z) while respecting the
constraint, as reported in algorithm 1. Here w is an auxiliary

Algorithm 1: Taylor relaxation

Input: z0 = [xT , yT ]T , w0, λ chosen at random,
parameters ρ, γ

1 while stop condition not met do
2 zk+1 ← argmin

z
f(z) + ρ

2‖z − c̃(z
k, zk−1) + λk‖

3 wk+1 ← ρ
ρ+γ (c̃(zk, zk−1) + λk)

4 λk+1 ← λk + wk+1 − c̃(zk, zk−1)
5 zk+1 = αzk+1 + (1− α)zk

variable representing x � y, which we want to shrink to
zero; lines 2-4 are standard ADMM iterations where line 3 is
the analytical solution of the minimization of the Lagrangian
function with respect to w; finally line 5 is a dumped iteration
over the last solution, with dumping parameter α. A different
approach is proposed by Wang et al. in [33], where they pro-
vided algorithm 2, which is a standard application of ADMM
to two objective functions, f(z) and IxT y=0, where IxT y=0 is
the feasible set for the complementarity constraint. Contrary
to algorithm 1 that we propose, this approach guarantees that
the problem always satisfies the complementary constraint at
each iteration, due to the projection onto the feasible space
of IxT y=0 at line 3. The authors proved that algorithm 2
converges into a stationary point for the bilinear constrained
problem when f(z) is a smooth function. Algorithms 1 and
2 are appealing since they are easily implementable and don’t
require to sequentially explore the whole solution space with
a branch-and-bound strategy.
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Algorithm 2: Wang relaxation

Input: z0 = [xT , yT ]T , z̃0 = [x̃T , ỹT ]T , λ chosen at
random, parameter ρ

1 while stop condition not met do
2 zk+1 ← argmin

z
f(z) + ρ

2‖z − z̃
k + λk‖

3 z̃k+1 ← πx̃T ỹ=0(z̃k − λk)
4 λk+1 ← λk + zk+1 − z̃k+1
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Fig. 1. Reservations by vehicle

III. NUMERICAL SIMULATIONS

A. Data analysis and preprocessing

We test our optimization framework on a dataset made
available by a car sharing operator managing a fleet of around
3000 vehicles. The dataset covers all car reservations from 1st
of January 2019 until 31st of July 2020, thereby including
the period before the COVID-19 pandemic as well as the first
wave. In total, there are around 2 million bookings during this
period, comprising 140880 unique users and 4461 vehicles.
Due to the setting of the considered car sharing service, only
a small fraction of trips are one-way (0.3%), and during the
observation period only 3.5% trips involved electric vehicles.
Furthermore, the number of vehicles per station is low on
average in the considered system. 73% of all stations offer
a single vehicle, further 15% only two vehicles. 5% of all
stations have five or more vehicles. The limited availability
of parking slots per station also explains the low fraction of
one-way trips.
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Fig. 2. Reserved vehicles by time of the day

We first analyze the flexibility of vehicles for V2G opera-
tions based on their daily and overall demand. Figure 1 shows
the histogram of reservations by vehicle. Clearly, there are
strong differences in the usage patterns of different vehicles.
48% of the vehicles have at least one reservation in less than
50% of the days. These findings imply a strong opportunity for
the car sharing operator to utilize its fleet for V2G. However,
the most flexibility is given during the night: Figure 2 shows
a bell shaped curve of vehicle utilization over the course of
a day, peaking in the afternoon. On average 21% of vehicles
are reserved at any time. Last, we validate the assumption
that most car reservations are known in advance, as it is
necessary for optimizing the charging schedule. Concerning
the spontaneity of the bookings, around 34% cars are reserved
more than a day in advance, whereas 20% of the reservations
are done less than an hour before the reservation period.

The data are discretized to a temporal resolution of 15-
minute steps. We remove cancelled trips but include service
reservations necessary for relocating vehicles. We use the
reservation period in contrast to the actual driving period
to define the time span of car usage. However, this leads to
overlapping trips in some cases when a returned vehicle was
taken by the next user before the end of the original reservation
period. The reservation period is therefore cut to the end
of the previous drive / start of the next drive if necessary.
Reservations without a ride are assumed to be cancelled and
are not taken into account.

B. ICE mobility patterns and State of Charge modeling

The car sharing service operator has set the ambitious goal
to electrify their entire fleet by 2030. In order to provide a
realistic simulation of the future fleet, and to demonstrate how
our optimization approach scales with the number of stations,
we propose to utilize the booking patterns of ICE vehicles
as projected EV usage patterns, under the assumption of a
similar driving behavior. Since only 3.5% of all trips are EV
trips, this scales up the number of reservations by a factor of
more than 25. In consultation with the car sharing operator
we assign an EV model to each ICE vehicle based on the
car category in the car sharing operator service, i.e. "Budget",
"Combi", "Transporter" etc. For example, all vehicles of
the category "Transporter" were simulated as Mercedes-Benz
eVito vehicles, and all in category "Budget" were assigned the
VW e-up model.

Two pieces of information are needed as input to the
optimization problem: When a vehicle is plugged in at a
station, and the required state of charge at the start of a
reservation. Due to the modeling of ICEs as EVs and the
lack of SOC data in the provided dataset, we approximate
the latter by the number of driven kilometers. Given the
vehicle specifications (i.e. battery range and battery capacity)
we compute the required SOC by multiplying the number of
driven kilometers with the average energy consumption.

C. Formulations comparison

We evaluated the numerical advantage of the proposed
formulations in two steps. At first, we compared the monolithic
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formulation (15)-(17) to the decomposed one (19)-(23) using
integer variables for handling bilinear constraints. In a second
step, we evaluated the decrease in computational time in using
the proposed linear methods for the bilinear constraints in the
decomposed problems. For both these comparisons we vary
the range of total EVs and the horizon length. The stations’
objective function was set to energy cost minimization, while
the system level objective was set to a profile tracking with a
zero reference profile. The results of the first comparison are
reported in the heatmaps of figure 3. For this comparison, we
solved the monolithic problem using GUROBI with standard
absolute and relative tolerances, while the stopping criterion
for the decomposed formulation is a joint condition on the
primal and dual residual, as described in §3.3.1 of [4], using
εabs = 1e − 6 and εrel = 1e − 4, respectively. The first two
heatmaps refer to the total computational time of the decom-
posed problem and the monolithic formulation, respectively.
The last plot shows the ratio of the two, a value lower than
one meaning a lower computational time for the decomposed
formulation. As expected, the computational advantage over
the monolithic formulation increases with both the number
of EVs and the length of the horizon. The experimental data
for up to 360 vehicles shows a clear trend; the computational
time of the decomposed problem for the most time consuming
configuration being roughly 20% of the time needed by the
monolithic formulation. The second comparison was done
using a fixed number of iterations, which was set to 800. At
first, we tuned the parameters of algorithm 1 and 2 w.r.t. the
solution reached by the integer formulation, using a random
sampling strategy over the configuration with 144 EVs and
an 18 steps horizon. The parameters (ρ and γ for 1 and ρ
for 2, respectively) were then held constant over the different
combinations of EVs and horizon lengths. We found that
both the algorithms’ performance was stable for a large range
of parameters values. The computational times are shown in
figure 4, where the first heatmap refers to the Taylor relaxation,
the second one to the integer formulation and the last is the
ratio of the two. As the computational advantage is due to
the change of the class of the problem from MIQP to QP, we
found a negligible difference in the computation times between
algorithm 1 and 2, and thus here report only results for the
Taylor relaxation. Also in this case there is a clear trend in
the reduction of computational time with increasing number of
EVs and steps. The highest reduction was found for the most
time consuming configuration of 577 EVs and 18 steps, with
the Taylor relaxation using roughly 35% of the time needed
by the integer formulation; once again we expect this value to
get lower for problems with higher number of EVs.

Figure 5 shows the distribution of ∆abs,relJc for all the
cases reported in figure 4. Here Jc is defined as the sum of the
different objective functions without including any augmented
Lagrangian terms (neither the one deriving by the problem
decomposition nor the ones of the linear formulations) in order
to have a fair comparison:

Jc = F (u) +Q(x) +
γ

2
‖u− uk‖22 (30)

Both the algorithms converge to the solution of the integer
formulation with some oscillations, even if the Taylor-based
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EVs for the decomposed (left plot), the monolithic formulation (center plot)
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relaxation shows better convergence, achieving a relative dif-
ference in the order of 1e − 3 for all the cases after 800
iterations.
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Fig. 5. Comparison of convergence dynamics using the Taylor or Wang for-
mulation for the bilinear constraint relaxation, in terms of relative differences
in total objective w.r.t. integer formulation, when stations optimize for costs
and the fleet has a reference tracking objective. Confidence interval refers to
all the 42 combinations of horizon length and number of EVs of figure 4.

D. Economic results

We use the proposed algorithm 1 to retrieve flexibility
boundaries for an EV fleet. The setting is the following: an
EV manager bidding for ancillary services is interested to
know for a given leading time how many MWs, for how
long, can be requested to the EV fleet for both upward and
downward flexibility calls, and how much it costs per MWh.
This information can then be used by the manager to make
more informative bids. We followed the approach proposed in
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[24] to achieve hourly flexibility boundary for an aggregation
of office buildings. For each hour of the day, we solve the
optimization problem (19)-(23), where each station minimizes
its total energy costs for the EVs charging operations, and
C(ps(us)) is modeled through the auxiliary variable y as
explained in section II-B. Since the considered car sharing
operator’s stations are located under different Swiss DSOs, we
used data from [10] to link them with the correct values for
the buying and selling energy prices pbuy and psell, depending
on their location. Additionally, we probabilistically assigned
each station with a PV power plant, with a nominal power
proportional to the maximum number of hosted EVs at that
station. The system level objective function is set to be:

S

(∑
s∈S

ps(u)

)
=
∑
t∈Th

pf |r −
∑
s∈S

ps(u)| (31)

where r is the reference profile, Th is the set of timesteps
belonging to hour h and pf is the price of flexibility, which is
constant over the considered hour. Equation (31) can be seen
as a linear punishment in deviating from a flexibility call. We
simulated a total number of 1440 EVs, keeping all the EVs
belonging to a given station if the latter was chosen by a
random sampling among all the available ones. An example of
results using this objective function when h = 12, at different
price levels, is shown in figure 6. When the fleet receives
an upward flexibility call at noon, the consumption decreases
in the rest of the day w.r.t. the baseline profile in which the
system level objective is set to zero and the only objective is
the stations’ cost minimization. The opposite verifies when
the fleet receives a downward flexibility call. For a given
day, we run 24 optimizations, systematically changing Th and
repeat the process for different values of pf . The resulting
flexibility envelopes can be seen in figure 7. Lines of different
colors represent the convex envelopes of the maximum and
minimum flexibility attained at different hour of the days for
a given price pf . It can be seen how during the first hour of
the day the fleet is not prepared to an upward call, since the
average SOC of the fleet is too high and the fleet has no time
to discharge beforehand. Moreover, a saturation effect can be
noticed after a given level of price: the maximum attainable
flexibility does not change significantly passing from a pf of
255 CHF/MWh to 377 CHF/MWh. In order to better analyze
this effect, we considered more price levels for the case in
which flexibility is requested at noon. Figure 8 shows the
maximum amount of MW reached for 10 different values
of pf ranging from 10 CHF/MWh to 377.5 CHF/MWh. The
saturation effect is clear for both the upper and lower requests,
but it’s starting at slightly different price levels, around 210
and 250 CHF/MWh, respectively. Finally, we study the effect
of the flexibility request on the other considered costs in the
optimization problem. Figure 9 shows the change in charging
costs, loss of SOC (equation (10)), tracking revenues and
total costs for the noon case. As expected, as the price level
increases, the tracking revenues rises for both upward and
downward flexibility calls, but this comes at the expense of
higher charging costs. The change of cost for the SOC lost is
negligible compared to the other costs.
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Fig. 6. Example of response to upward and downward flexibility calls as a
function of price, compared to the baseline case in which there is no system
level costs and the stations just optimize for their local energy prices.
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Fig. 8. Deviation from the baseline power profile as a function of flexibility
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Fig. 9. Behaviour of different fleet costs as a function of flexibility price pf ,
for the noon case.

IV. CONCLUSIONS

In this paper we presented an optimization model to control
the charging and discharging operation of large EV fleets.
We started by modeling a generic case in which the EVs are
allowed to relocate between stations, and then focused on the
strictly stationary model where EVs are picked up and dropped
off at the same station, since this reflects the conditions of
the presented case study. For this last case we demonstrated
how the problem can be decomposed by stations, allowing to
reduce the overall computational time. Furthermore, we used
iterative methods to handle the bilinear constraints arising from
the V2G formulation, which allows us to use a larger class of
(free) solvers. For different combinations of horizon’s lengths
and number of EVs, we reported numerical results showing
substantial speed ups w.r.t. the monolithic formulation, due
to both problem decomposition and the use of relaxations
for the bilinear constraints. We see multiple opportunities for
future work. First, many car sharing bookings are spontaneous,
limiting the applicability of day-ahead planning in real world
scenarios. This could be tackled with the integration of book-
ing forecasts; since forecasts introduce uncertainty, a receding
horizon optimization can be used to minimize errors. Addition-
ally, a stochastic formulation e.g. tree-based stochastic MPC
[2], can be used to further tackle the uncertainty of bookings
and PV generation.
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